- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract New, open access tools have been developed to validate ionospheric models in terms of technologically relevant metrics. These are ionospheric errors on GPS 3D position, HF ham radio communications, and peak F‐region density. To demonstrate these tools, we have used output from Sami is Another Model of the Ionosphere (SAMI3) driven by high‐latitude electric potentials derived from Active Magnetosphere and Planetary Electrodynamics Response Experiment, covering the first available month of operation using Iridium‐NEXT data (March 2019). Output of this model is now available for visualization and download viahttps://sami3.jhuapl.edu. The GPS test indicates SAMI3 reduces ionospheric errors on 3D position solutions from 1.9 m with no model to 1.6 m on average (maximum error: 14.2 m without correction, 13.9 m with correction). SAMI3 predicts 55.5% of reported amateur radio links between 2–30 MHz and 500–2,000 km. Autoscaled and then machine learning “cleaned” Digisonde NmF2 data indicate a 1.0 × 1011 el. m3median positive bias in SAMI3 (equivalent to a 27% overestimation). The positive NmF2 bias is largest during the daytime, which may explain the relatively good performance in predicting HF links then. The underlying data sources and software used here are publicly available, so that interested groups may apply these tests to other models and time intervals.more » « less
-
Kelly, R; Lodge, D; Lee, K; Theroux, S; Sepulveda, A; Scholin, C; Craine, J; Allan, E; Nichols, K; Parsons, K; et al (, Environmental DNA)Environmental DNA (eDNA) data make it possible to measure and monitor biodiversity at unprecedented resolution and scale. As use-cases multiply and scientific consensus grows regarding the value of eDNA analysis, public agencies have an opportunity to decide how and where eDNA data fit into their mandates. Within the United States, many federal and state agencies are individually using eDNA data in various applications and developing relevant scientific expertise. A national strategy for eDNA implementation would capitalize on recent scientific developments, providing a common set of next-generation tools for natural resource management and public health protection. Such a strategy would avoid patchwork and possibly inconsistent guidelines in different agencies, smoothing the way for efficient uptake of eDNA data in management. Because eDNA analysis is already in widespread use in both ocean and freshwater settings, we focus here on applications in these environments. However, we foresee the broad adoption of eDNA analysis to meet many resource management issues across the nation because the same tools have immediate terrestrial and aerial applications.more » « less
An official website of the United States government

Full Text Available